在本文中,我们提出了一种快速的单眼深度估计方法,用于启用低成本水下机器人的3D感知能力。我们制定了一种名为udepth的新型端到端深度视觉学习管道,该管道结合了自然水下场景的图像形成特征的领域知识。首先,我们通过利用水下光线衰减来调整新的输入空间,然后在粗像素深度预测中设计最小二乘配方。随后,我们将其扩展到一个域投影损失,该损失指导超过9K RGB-D训练样本的Udepth的端到端学习。 Udepth采用计算轻型MobilenETV2骨架和基于变压器的优化器设计,以确保嵌入式系统上的快速推理速率。通过域感知的设计选择并通过全面的实验分析,我们证明了可以在确保较小的计算足迹的同时实现最新的深度估计性能。具体而言,与现有基准相比,网络参数少70%-80%,Udepth实现了可比性的,并且通常更高的深度估计性能。虽然完整的模型在单个GPU(CPU核心)上提供了超过66 fps(13 fps)的推理率,但我们对粗深度预测的域投影在单板NVIDIA JETSON TX2S上以51.5 fps的速率运行。推理管道可在https://github.com/uf-robopi/udepth上找到。
translated by 谷歌翻译
我们提出了一种新颖的方法,可用于快速准确的立体声视觉同时定位和映射(SLAM),独立于特征检测和匹配。通过优化3D点的规模,将单眼直接稀疏的内径术(DSO)扩展到立体声系统,以最小化立体声配置的光度误差,从而与传统立体声匹配相比产生计算有效和鲁棒的方法。我们进一步将其扩展到具有环路闭合的完整SLAM系统,以减少累积的错误。在假设前向相机运动中,我们使用从视觉径管中获得的3D点模拟LIDAR扫描,并适应LIDAR描述符以便放置识别以便于更有效地检测回路封闭件。之后,我们通过最小化潜在环封闭件的光度误差来估计使用直接对准的相对姿势。可选地,通过使用迭代最近的点(ICP)算法来实现通过直接对准的进一步改进。最后,我们优化一个姿势图,以提高全球的猛烈精度。通过避免在我们的SLAM系统中的特征检测或匹配,我们确保高计算效率和鲁棒性。与最先进的方法相比,公共数据集上的彻底实验验证展示了其有效性。
translated by 谷歌翻译
The ability to distinguish between different movie scenes is critical for understanding the storyline of a movie. However, accurately detecting movie scenes is often challenging as it requires the ability to reason over very long movie segments. This is in contrast to most existing video recognition models, which are typically designed for short-range video analysis. This work proposes a State-Space Transformer model that can efficiently capture dependencies in long movie videos for accurate movie scene detection. Our model, dubbed TranS4mer, is built using a novel S4A building block, which combines the strengths of structured state-space sequence (S4) and self-attention (A) layers. Given a sequence of frames divided into movie shots (uninterrupted periods where the camera position does not change), the S4A block first applies self-attention to capture short-range intra-shot dependencies. Afterward, the state-space operation in the S4A block is used to aggregate long-range inter-shot cues. The final TranS4mer model, which can be trained end-to-end, is obtained by stacking the S4A blocks one after the other multiple times. Our proposed TranS4mer outperforms all prior methods in three movie scene detection datasets, including MovieNet, BBC, and OVSD, while also being $2\times$ faster and requiring $3\times$ less GPU memory than standard Transformer models. We will release our code and models.
translated by 谷歌翻译
Several self-supervised representation learning methods have been proposed for reinforcement learning (RL) with rich observations. For real-world applications of RL, recovering underlying latent states is crucial, particularly when sensory inputs contain irrelevant and exogenous information. In this work, we study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information. We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations. Exploiting the expressiveness bought by factorized representations, we introduce a simple, yet effective, bottleneck that can be integrated with any existing self-supervised objective for RL. We demonstrate this across several online and offline RL benchmarks, along with a real robot arm task, where we find that compressed representations with RepDIB can lead to strong performance improvements, as the learned bottlenecks help predict only the relevant state while ignoring irrelevant information.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
Task agnostic generative pretraining (GPT) has recently proved promising for zero- and few-shot learning, gradually diverting attention from the expensive supervised learning paradigm. Although the community is accumulating knowledge as to capabilities of English-language autoregressive models such as GPT-3 adopting this generative approach, scholarship about these models remains acutely Anglocentric. Consequently, the community currently has serious gaps in its understanding of this class of models, their potential, and their societal impacts in diverse settings, linguistic traditions, and cultures. To alleviate this issue for Arabic, a collection of diverse languages and language varieties with more than $400$ million population, we introduce JASMINE, a suite of powerful Arabic autoregressive Transformer language models ranging in size between 300 million-13 billion parameters. We pretrain our new models with large amounts of diverse data (400GB of text) from different Arabic varieties and domains. We evaluate JASMINE extensively in both intrinsic and extrinsic settings, using a comprehensive benchmark for zero- and few-shot learning across a wide range of NLP tasks. We also carefully develop and release a novel benchmark for both automated and human evaluation of Arabic autoregressive models focused at investigating potential social biases, harms, and toxicity in these models. We aim to responsibly release our models with interested researchers, along with code for experimenting with them
translated by 谷歌翻译
Climate change has increased the intensity, frequency, and duration of extreme weather events and natural disasters across the world. While the increased data on natural disasters improves the scope of machine learning (ML) in this field, progress is relatively slow. One bottleneck is the lack of benchmark datasets that would allow ML researchers to quantify their progress against a standard metric. The objective of this short paper is to explore the state of benchmark datasets for ML tasks related to natural disasters, categorizing them according to the disaster management cycle. We compile a list of existing benchmark datasets introduced in the past five years. We propose a web platform - NADBenchmarks - where researchers can search for benchmark datasets for natural disasters, and we develop a preliminary version of such a platform using our compiled list. This paper is intended to aid researchers in finding benchmark datasets to train their ML models on, and provide general directions for topics where they can contribute new benchmark datasets.
translated by 谷歌翻译
The neural implementation of operant conditioning with few trials is unclear. We propose a Hippocampus-Inspired Cognitive Architecture (HICA) as a neural mechanism for operant conditioning. HICA explains a learning mechanism in which agents can learn a new behavior policy in a few trials, as mammals do in operant conditioning experiments. HICA is composed of two different types of modules. One is a universal learning module type that represents a cortical column in the neocortex gray matter. The working principle is modeled as Modulated Heterarchical Prediction Memory (mHPM). In mHPM, each module learns to predict a succeeding input vector given the sequence of the input vectors from lower layers and the context vectors from higher layers. The prediction is fed into the lower layers as a context signal (top-down feedback signaling), and into the higher layers as an input signal (bottom-up feedforward signaling). Rewards modulate the learning rate in those modules to memorize meaningful sequences effectively. In mHPM, each module updates in a local and distributed way compared to conventional end-to-end learning with backpropagation of the single objective loss. This local structure enables the heterarchical network of modules. The second type is an innate, special-purpose module representing various organs of the brain's subcortical system. Modules modeling organs such as the amygdala, hippocampus, and reward center are pre-programmed to enable instinctive behaviors. The hippocampus plays the role of the simulator. It is an autoregressive prediction model of the top-most level signal with a loop structure of memory, while cortical columns are lower layers that provide detailed information to the simulation. The simulation becomes the basis for learning with few trials and the deliberate planning required for operant conditioning.
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
Accurate recognition of food items along with quality assessment is of paramount importance in the agricultural industry. Such automated systems can speed up the wheel of the food processing sector and save tons of manual labor. In this connection, the recent advancement of Deep learning-based architectures has introduced a wide variety of solutions offering remarkable performance in several classification tasks. In this work, we have exploited the concept of Densely Connected Convolutional Neural Networks (DenseNets) for fruit quality assessment. The feature propagation towards the deeper layers has enabled the network to tackle the vanishing gradient problems and ensured the reuse of features to learn meaningful insights. Evaluating on a dataset of 19,526 images containing six fruits having three quality grades for each, the proposed pipeline achieved a remarkable accuracy of 99.67%. The robustness of the model was further tested for fruit classification and quality assessment tasks where the model produced a similar performance, which makes it suitable for real-life applications.
translated by 谷歌翻译